Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
J Thorac Dis ; 15(3): 1517-1522, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2306368

RESUMEN

China government has relaxed the response measures of COVID-19 in early December 2022. In this report, we assessed the number of infections, the number of severe cases based on the current epidemic trend (October 22, 2022 to November 30, 2022) using a transmission dynamics model, called modified susceptible-exposed-infectious-removed (SEIR) to provide valuable information to ensure the medical operation of the healthcare system under the new situation. Our model showed that the present outbreak in Guangdong Province peaked during December 21, 2022 to December 25, 2022 with about 14.98 million new infections (95% CI: 14.23-15.73 million). The cumulative number of infections will reach about 70% of the province's population from December 24, 2022 to December 26, 2022. The number of existing severe cases is expected to peak during January 1, 2023 to January 5, 2023 with a peak number of approximately 101.45 thousand (95% CI: 96.38-106.52 thousand). In addition, the epidemic in Guangzhou which is the capital city of Guangdong Province is expected to have peaked around December 22, 2022 to December 23, 2022 with the number of new infections at the peak being about 2.45 million (95% CI: 2.33-2.57 million). The cumulative number of infected people will reach about 70% of the city's population from December 24, 2022 to December 25, 2022 and the number of existing severe cases is expected to peak around January 4, 2023 to January 6, 2023 with the number of existing severe cases at the peak being about 6.32 thousand (95% CI: 6.00-6.64 thousand). Predicted results enable the government to prepare medically and plan for potential risks in advance.

3.
Front Public Health ; 10: 979063, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2199463

RESUMEN

Introduction: SARS-CoV-2 has ravaged the world and undergone multiple mutations during the course of the COVID-19 pandemic. On 7 April 2022, an epidemic caused by SARS-CoV-2 Omicron (BA.2) variant broke out in Guangzhou, China, one of the largest transportation and logistical hubs of the country. Methods: To fast curtained the Omicron epidemic, based on the routine surveillance on the risk population of SARS-CoV-2 infection, we identify key places of the epidemic and implement enhanced control measures against Omicron. Results: Transmission characteristics of the Omicron variant were analyzed for 273 confirmed cases, and key places involved in this epidemic were fully presented. The median incubation time and the generation time were 3 days, and the reproduction number Rt was sharply increased with a peak of 4.20 within 2 days. We tried an all-out effort to tackle the epidemic in key places, and the proportion of confirmed cases increased from 61.17% at Stage 2 to 88.89% at Stage 4. Through delimited risk area management, 99 cases were found, and the cases were isolated in advance for 2.61 ± 2.76 days in a lockdown zone, 0.44 ± 1.08 days in a controlled zone, and 0.27 ± 0.62 days in a precautionary zone. People assigned with yellow code accounted for 30.32% (84/277) of confirmed COVID-19 cases, and 83.33% of them were detected positive over 3 days since code assignment. For the districts outside the epicenter, the implementation duration of NPIs was much shorter compared with the Delta epidemic last year. Conclusion: By blocking out transmission risks and adjusting measures to local epidemic conditions through the all-out effort to tackle the epidemic in key places, by delimiting risk area management, and by conducting health code management of the at-risk population, the Omicron epidemic could be contained quickly.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Pandemias , SARS-CoV-2
4.
Sci Rep ; 12(1): 21096, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2151081

RESUMEN

China detected the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with Delta variant in May 2021. We assessed control strategies against this variant of concern. We constructed a robust transmission model to assess the effectiveness of interventions against the Delta variant in Guangzhou with initial quarantine/isolation, followed by social distancing. We also assessed the effectiveness of alternative strategies and that against potentially more infectious variants. The effective reproduction number (Rt) fell below 1 when the average daily number of close contacts was reduced to ≤ 7 and quarantine/isolation was implemented on average at the same day of symptom onset in Guangzhou. Simulations showed that the outbreak could still be contained when quarantine is implemented on average 1 day after symptom onset while the average daily number of close contacts was reduced to ≤ 9 per person one week after the outbreak's beginning. Early quarantine and reduction of close contacts were found to be important for containment of the outbreaks. Early implementation of quarantine/isolation along with social distancing measures could effectively suppress spread of the Delta and more infectious variants.

5.
Natl Sci Rev ; 9(4): nwac004, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1821757

RESUMEN

The SARS-CoV-2 B.1.617.2 (Delta) variant flared up in late May in Guangzhou, China. Transmission characteristics of Delta variant were analysed for 153 confirmed cases and two complete transmission chains with seven generations were fully presented. A rapid transmission occurred in five generations within 10 days. The basic reproduction number (R0) was 3.60 (95% confidence interval: 2.50-5.30). After redefining the concept of close contact, the proportion of confirmed cases discovered from close contacts increased from 43% to 100%. With the usage of a yellow health code, the potential exposed individuals were self-motivated to take a nucleic acid test and regained public access with a negative testing result. Facing the massive requirement of screening, novel facilities like makeshift inflatable laboratories were promptly set up as a vital supplement and 17 cases were found, with 1 pre-symptomatic. The dynamic adjustment of these three interventions resulted in the decline of Rt from 5.00 to 1.00 within 9 days. By breaking the transmission chain and eliminating the transmission source through extending the scope of the close-contact tracing, health-code usage and mass testing, the Guangzhou Delta epidemic was effectively contained.

6.
Front Microbiol ; 12: 801946, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1690426

RESUMEN

China implemented stringent non-pharmaceutical interventions (NPIs) in spring 2020, which has effectively suppressed SARS-CoV-2. In this study, we utilized data from routine respiratory virus testing requests from physicians and examined circulation of 11 other respiratory viruses in Southern China, from January 1, 2018 to December 31, 2020. A total of 58,169 throat swabs from patients with acute respiratory tract infections (ARTIs) were collected and tested. We found that while the overall activity of respiratory viruses was lower during the period with stringent NPIs, virus activity rebounded shortly after the NPIs were relaxed and social activities resumed. Only influenza was effectively suppressed with very low circulation which extended to the end of 2020. Circulation of other respiratory viruses in the community was maintained even during the period of stringent interventions, especially for rhinovirus. Our study shows that NPIs against COVID-19 have different impacts on respiratory viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA